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The extended phase graph (EPG) calculus gives an elegant pictorial description of magnetization response
in multi-pulse MR sequences. The use of the EPG calculus enables a high computational efficiency for the
quantitation of echo intensities even for complex sequences with multiple refocusing pulses with arbi-
trary flip angles. In this work, the EPG concept dealing with RF pulses with arbitrary flip angles and
phases is extended to account for anisotropic diffusion in the presence of arbitrary varying gradients.
The diffusion effect can be expressed by specific diffusion weightings of individual magnetization path-
ways. This can be represented as an action of a linear operator on the magnetization state. The algorithm
allows easy integration of diffusion anisotropy effects. The formalism is validated on known examples
from literature and used to calculate the effective diffusion weighting in multi-echo sequences with arbi-
trary refocusing flip angles.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The extended phase graph (EPG) [1–3] calculus describes the re-
sponse of magnetization in Fourier space. As such it is related to
the k-space concept used to describe spatial encoding [4–6]. It
can be understood as a solution of the Bloch equation [7] using
its Fourier representation and is especially well suited for the char-
acterization of spin systems that are strongly dephased by mag-
netic field inhomogeneities or switched gradients [1–3,8]. Instead
of tracing different phase evolutions of spins, the spin system is de-
picted by a finite set of phase state constellations [1–3,8]. The EPG
of an MR sequence can then be calculated stepwise using a transi-
tion matrix formalism between specific points of interest, e.g. from
RF pulse to RF pulse or from RF pulse to echo or equivalent [1,2].
This allows for a more intuitive and pictorial understanding of echo
formation and assignment.

MR sequences are described by consecutive events of RF pulses,
switched magnetic field gradients, and free phase evolution [2,8].
For understanding the generic response of multi-pulse sequences,
a one-dimensional (1D) dephasing coordinate is normally suffi-
ll rights reserved.
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cient, and the intricacies of k-space trajectories are ignored. This
allows to include T1- and T2-relaxation effects, which are indepen-
dent of the actual k-space trajectory of transverse magnetization
pathways. Diffusion and flow effects depend on the timing and
amplitude of the gradients used and are therefore neglected
[1–3,8].

Explicit analytical expressions for the echo amplitudes of multi-
pulse sequences were also published, based on a generating func-
tion formalism [9,10]. However, diffusion and flow effects are
neglected as well.

Progress in quantifying diffusion and flow effects of multi-spin
echo sequences has been made by Kiselev [11]. The Bloch–Torrey
equation [12] was solved in Fourier space with account for the
diffusion and flow effects. The solution was built as a chain of oper-
ators acting on the Fourier transform of the magnetization. Calcu-
lations were performed for isotropic diffusion and piece-wise
constant gradient applied in a single direction, but omitting the
explicit formula for the diffusion operator [11]. Similar results
were obtained by Zur [13] who used the spinor technique and
briefly discussed the diffusion anisotropy. A phenomenological
description of flow within the 1D EPG was also published [14].

The purpose of this work is to introduce diffusion effects into
the framework of the EPG algorithm to allow for a simplified
description of these effects in sequences with multiple, arbitrary
RF pulses, particularly the CPMG sequence [15,16]. In order to
account for diffusion anisotropy the EPG formalism is extended
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to include all three dimensions covered by the spatial coordinates
of the gradient system. The time course of all three gradient com-
ponents is independent and can be arbitrary. For verification and
illustration of the formalism, the obtained result of an anisotropic
diffusion operator is applied to both basic examples to demon-
strate and verify the formalism with already known solutions
and more complex, new examples to present and underline its
potential.

2. Theory

2.1. Extended phase graphs in three dimensions

The fundamental Bloch equation is defined in three-dimen-
sional position space (x-space) with r = [x,y,z]� to depict magneti-
zation as a vector with the components M = [Mx,My,Mz]�. M
depends on the spatial coordinates and evolves with time:
M(r, t). The symbol ‘‘�” denotes the Hermitian conjugation of vec-
tors and matrices throughout this text.

MR imaging sequences use many gradient steps for spatial
encoding, which results in dephased magnetization constellations
during most of the time of the sequence. Dealing with dephased
magnetization (in x-space), however, is an extensive task using
the Bloch equation, which requires calculations over a multitude
of spins. The characterization of dephased spin states used by the
EPG is much more simple and is based on the Fourier space coor-
dinate k [6]:

knðtÞ ¼ c
Z t

t0¼0
Gnðt0Þdt0 ¼

Z t

t0¼0
gnðt0Þdt0; ð1Þ

where n = x, y, z and the common substitution g = cG was made. Eq.
(1) introduces with k = [kx,ky,kz]� a quantitative measure of dephas-
ing of the whole spin system with three-dimensional (3D) dephas-
ing coordinates due to acting arbitrary gradients G(t) = [Gx,Gy,Gz]�.

In the Fourier based EPG calculus magnetization is represented
by the corresponding Fourier transforms:

FþðkÞ ¼
Z

V
MxðrÞ þ iMyðrÞ
� �

exp �ikrð Þd3r; ð2Þ

F�ðkÞ ¼
Z

V
MxðrÞ � iMyðrÞ
� �

exp �ikrð Þd3r; ð3Þ

ZðkÞ ¼
Z

V
MzðrÞ exp �ikrð Þd3r; ð4Þ

where all integrations are performed over the macroscopically large
sample volume. Basic properties of the Fourier transform lead to the
additional relations F�þðkÞ ¼ F�ð�kÞ (definition of F±) and Z(�k) =
Z*(k) (Mz is real), with ‘‘�” signifying the complex conjugate.

Eqs. (2) and (3) use a slightly different notation compared to the
original publications [1–3] to be mathematically more rigorous.
They represent the general continuous form of the EPG. Especially
for regular and periodic MR sequences such as RARE (TSE, FSE) [17]
or TrueFISP (balanced SSFP) [18,19] only a discrete set of k-values
and, hence, F±(k)- and Z(k)-values is generated. These are called
phase states or partition states.

The complete magnetization constellation of a spin system at a
given time is usually described by a vector F of various EPG parti-
tion states with different k (representation in 3D):

F ¼ Fk0
Fk1

Fk2
Fk3
� � � Zk4 Zk5 Zk6

� � �
� �T

: ð5Þ

Generally, the number of elements in F changes with time, since
RF pulses can create EPG states or combine EPG states, and relax-
ation and diffusion effects can eliminate EPG states [1–3]. From a
more rigorous physical point of view, it may be more appropriate
to claim that F theoretically contains all possible EPG states that
the examined sequence can access, but only a very small minority
of them has a non-vanishing population, meaning a Fourier com-
ponent that is not 0. Then, the creation of an EPG state means that
its corresponding population becomes unequal 0, the elimination
of an EPG state means that its population assumes 0.

Clearly for practical reasons, F will always only contain the non-
vanishing partition states within this text.

In a typical one-dimensional EPG representation for periodic se-
quences F could look like the following:

F ¼ ðF0Z0F1F�1Z1F2F�2Z2 � � � FþkF�kZkÞT: ð6Þ

The later presented examples below will make use of the vector
F similar to the form presented above.

A summary of the currently published operators solved for the
EPG calculus (1D-representation) is as follows [1–3,8,11]:

� Shift operator S: Evolution of magnetization dependent on time
and gradient dephasing.
� Transition operator T : Instantaneous RF pulse with flip angle a and

phase U (i.e. a rotation of spins).
� Relaxation operator E: Longitudinal and transversal relaxation

with relaxation times T1 and T2, respectively.
� Isotropic diffusion operator D: Signal attenuation due to diffusion

effects dependent on time, diffusion and dephasing (constant gradi-
ents only, framed for the EPG from Ref. [11]).

The exact representations of the operators published in litera-
ture are [1–3,8,11]:

S tp ! tpþ1
� �

¼ S k;Dkð Þ : Fk ! FkþDk; Zk ! Zk; ð7Þ
T ðtpÞ ¼ T UðaÞ

¼
cos2 a

2 expð2iUÞ sin2 a
2 �i expðiUÞ sin a

expð�2iUÞ sin2 a
2 cos2 a

2 i expð�iUÞ sin a
� i

2 expð�iUÞ sin a i
2 expðiUÞ sin a cos a

2664
3775; ð8Þ

E tp ! tpþ1
� �

¼ E s; T1; T2ð Þ ¼

exp � s
T2

� �
0 0

0 exp � s
T2

� �
0

0 0 exp � s
T1

� �
266664

377775; ð9Þ

D tp ! tpþ1
� �

¼ D D; s; k;Dkð Þ ¼ exp �bs � Dð Þ; ð10Þ

with bs ¼ kþ Dk
2

� 	2

� sþ Dk2

12
� s: ð11Þ

All operators except for T are defined on a time interval
s = tp+1 � tp, while T acts instantly at the time points of the RF
pulses. For operators that depend on k, a change of k to k + Dk takes
place for any given transversal state, while any given longitudinal
state keeps its initial k.

The transition operator T does not depend on k. It realizes the
same rotation for all states. In particular, T only mixes phase states
of the same dephasing order of k [2]. Furthermore, the T -operator
acts on the total magnetization. In contrast, operators S; E and D
act on the difference between the actual and the equilibrium mag-
netization M �M0. The latter is normalized to unity, M0 = [0,0,1]�.

The isotropic diffusion operatorD acts differently on transversal
and longitudinal phase states (see also below), since longitudinal
states do not experience phase evolution, hence, the second term
of Eq. (11) vanishes due to Dk = 0. Eqs. (10) and (11) were framed
for the EPG calculus from Ref. [11]. It is to note that the relation is
only defined for constant gradient g, i.e. Dk = gs. D is the scalar dif-
fusion coefficient for isotropic diffusion.

Fig. 1 demonstrates a representative example for the use of the
(1D) EPG framework as a repetition or introduction based on a
multi-spin echo sequence with arbitrary flip angles and timing.
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Fig. 1. Representative example for the use of the EPG. Note the direct relation
between the EPG and the sequence diagram as shown. Continuous lines denote
pathways of transversal F-states, dashed lines signify longitudinal Z-states. Only the
salient T - and S-operators were noted, since only these show visible effects of
splitting and evolving phase graphs. E and D merely influence the population of
states. For reasons of simplicity, two rephasing pathways after the third RF pulse
were excluded from the figure. They would lead to two further echoes at a later
time.
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Three different RF pulses (flip angles a1, a2, a3) and three gradients
with different durations and strengths g1, g2, g3 were presumed.

Continuous lines represent transversal magnetization (F-states,
Eqs. (2) and (3)) that evolve with time (x-axis). The slope of the
transversal pathways directly corresponds to the active gradient
strength, since k describes the dephasing of a given state and Dk
is proportional to g (Eq. (1)). Hence, at locations where (ideally)
no gradient exists, the F-states demonstrate horizontal lines, since
no further dephasing takes place.

Dashed lines represent longitudinal magnetization (Z-states, Eq.
(4)). These do not experience any phase evolution with time and
are, thus, always horizontal lines. Generally, phase evolution such as
dephasing and rephasing is depicted by changing k and accomplished
by the shift operator S, as indicated in the EPG diagram of Fig. 1.

Magnetization after an RF pulse can be regarded as a composi-
tion of three components, which was first described by Woessner
[20]: (1) A transversal component that is unaffected by the RF
pulse (‘0�-pulse’). (2) Another transversal component that was
refocused by an 180�-pulse. (3) A longitudinal component. This
superposition of magnetization vectors is also known as the
Woesssner decomposition [20]. In terms of the EPG this means that
the T -operator, representing RF pulses, splits any given EPG state
with dephasing order k into three different new states: (1) A trans-
versal state with identical k. (2) A transversal state with inverted k.
(3) A longitudinal state with identical k. This behavior is directly
reflected in the EPG diagram of Fig. 1, where each pathway splits
into three new ones after the application of T . The fractional pop-
ulations of the new partition states, and therefore new pathways,
depend on the applied flip angle and are described quantitatively
by Eq. (8). Each of the three RF pulses also creates an additional
FID represented by the transversal pathway starting from the x-
axis in each case.
Besides the salient EPG operators T and S, the relaxation oper-
ator E and the diffusion operator D act between the RF pulses and
realize evolution of the spin system in terms of relaxation and dif-
fusion effects. Both were not noted in Fig. 1 for a better overview.

Each transversal path that crosses the k = 0 line/x-axis charac-
terizes the generation of an echo, i.e. an F0-state meaning coherent
magnetization exists. All echoes in Fig. 1 are denoted as circles and
are labeled with their type of spin echo (SE) or stimulated echo
(STE). This classification results from the source of the investigated
pathway before the RF pulse: Either it was a transversal (SE) or lon-
gitudinal (STE) path before.

As a typical example, the vector of phase state constellations F
directly after the third RF pulse in Fig. 1 can be calculated via the
following sequence of matrix operations:

Fþðt3Þ ¼ T ðt3ÞD t2 ! t3ð ÞE t2 ! t3ð ÞS t2 ! t3ð Þ
T ðt2ÞDðt01 ! t2ÞEðt01 ! t2Þ
Dðt1 ! t01ÞEðt1 ! t01ÞSðt1 ! t01ÞT ðt1ÞZ0; ð12Þ

where t1; t01; t2; and t3 denote the point of times when the respec-
tive operators start or end to act (see also operator list above). The
superscript ‘‘+” denotes ‘‘directly after the pulse”, which is a com-
mon notation in literature [8].

F+(t3) is the vector consisting of the phase state constellations
generated through the sequence of matrix operators acting on
the single initial Z0-state, and, thus, describing the sequence. The
Z0 state contains the non-modulated longitudinal magnetization.
It is therefore presumed that the MR sequence initially starts from
the thermal equilibrium magnetization M0, i.e. all Z-states and F-
states vanish except for Z0.

Eq. (12) has to be interpreted such that each operator acts on
the present set of phase state constellations F(tp) and creates a
new one. The operators act successively or in the strict block-wise
fashion as noted. In particular, occurring F0-states represent gener-
ated echoes and their occupation equals to the corresponding echo
amplitude. Fig. 1 displays an example for this effect, where an
intermediate spin echo forms between the 2nd and 3rd RF pulse
(black circle on the time axis).

F+(t3) has to contain nine transversal F-states and five longitudinal
Z-states, as can be easily counted from the number of evolving path-
ways shown after the 3rd RF pulse in Fig. 1 (two transversal pathways
at the bottom are not shown and one longitudinal pathway, arising
from the Z0-state, lies directly on the x-axis see figure caption).

2.2. Anisotropic diffusion regarded with the extended phase graph

The starting point to determine unrestricted anisotropic diffu-
sion effects in the EPG is the Bloch–Torrey equation, which depicts
the evolution of magnetization for diffusing spins in a liquid [12]. It
is written here in the form used in Ref. [11]:

@w
@t
¼ Dmnrmrnwþ igmrmIzw�

1
T2

I2
zw�

1
T1
ð1� I2

z Þw: ð13Þ

Here, w represents the difference of the magnetization density to
the thermal equilibrium magnetization and varies in space and
time: w = w(r,t). D is the macroscopic effective self-diffusion tensor
with the corresponding tensor elements Dmn = Dnm. Iz is the gener-
ator of rotation around the z-axis:

Iz ¼
0 þi 0
�i 0 0
0 0 0

264
375; I2

z ¼
1 0 0
0 1 0
0 0 0

264
375: ð14Þ

For easier handling of the tensors and vectors an element-index
description is used in Eq. (13) and in the following text. Any double
occurring index implies a summation over this index over the
whole range x, y, z (‘‘Einstein notation”).
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Fig. 2. Investigation of a typical F- and Z-state with a given initial dephasing k(1).
The volume of the solid of revolution under the coherence path directly corresponds
to the bs-factor for the regarded time interval s (divided by p). Particularly, the solid
of revolution represents a truncated cone for transversal F-states and a cylinder for
longitudinal Z-states.

M. Weigel et al. / Journal of Magnetic Resonance 205 (2010) 276–285 279
Eq. (13) can be solved for unrestricted anisotropic diffusion by
using the method of characteristics [21]. This mathematical solution
is presented in Appendix A.1. Essentially the same solution is dis-
cussed in a more pictorial and intuitive way in the following text.

Unrestricted anisotropic diffusion motion in 3D position space
is described by the diffusion propagator

Pðr; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDjð4ptÞ3

q exp � ryD�1r
4t

 !
; ð15Þ

where jDj is the determinant and D�1 is the inverse of D. Eq. (15)
describes an ‘‘anisotropic Gaussian” broadening with time, its expo-
nent representing a time dependent diffusion ellipsoid. In the limit
as t tends to 0 the Gaussian tends to a delta peak. Eq. (15) is a solu-
tion of the Bloch–Torrey equation selected by the delta-functional
initial condition.

Given an original magnetization distribution M(r,0) in position
space at t = 0, the evolution of magnetization due to diffusion after
an elapsed time Dt > 0 is given by the convolution:

Mðr;DtÞ ¼ Pðr;DtÞ �Mðr;0Þ ¼
Z

V
Pðr0 � r;DtÞ �Mðr0;0Þd3r0: ð16Þ

According to the convolution theorem, Eq. (16) is equivalent to
the product in the Fourier space representation:

FT Mðr;DtÞf g ¼ FT Pðr;DtÞf g � FT Mðr;0Þf g; ð17Þ

¢fMðk;DtÞ ¼ ePðk;DtÞ �fMðk;0Þ: ð18Þ

Here fMðk;DtÞ represents diffusion affected magnetization in k-
space. Reformulating it as a sum of transversal F-states and longitu-
dinal Z-states directly leads to the EPG calculus represented by Eqs.
(1)–(4). Then, ePðk;DtÞ directly signifies the EPG diffusion operator
sought after.

Evaluating the Fourier transform of Eq. (15) leads to

ePðk;DtÞ ¼ FT
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jDjð4pDtÞ3
q exp � ryD�1r

4Dt

 !8><>:
9>=>;; ð19Þ

¼ exp �kyDkDt
� �

¼ exp �kmDmnknDtð Þ: ð20Þ

Eqs. (19) and (20) are only derived for a constant k within the
time interval Dt so far. However, discretizing a given interval s
with changing k into many intervals Dt with different constant k
and taking the limit Dt ? 0, yields the result for continuous k(t)-
values, i.e. k-space trajectories. Thus, the EPG operator for unre-
stricted anisotropic diffusion takes the following general form:

D kðtÞ; sð Þ ¼ exp �
Z s

t¼0
kyðtÞDkðtÞdt

� 	
¼ exp �

Z s

t¼0
kmðtÞDmnknðtÞdt

� 	
; ð21Þ

where k(t) denotes the k-space trajectory during the time interval s.
Eq. (21) emphasizes the fact that the exhibited diffusion weighting
directly depends on the effective k-space trajectory.

In analogy to common literature where a b-matrix defines the
level of total diffusion weighting a given NMR sequence exhibits
[22,23], a ‘b-matrix per time interval s’, bs is defined in the follow-
ing, which quantifies the exhibited diffusion weighting of an MR
sequence in this time interval s:

bs;mn kmðtÞ; knðtÞ; sð Þ ¼
Z s

t¼0
kmðtÞ � knðtÞdt: ð22Þ

Its definition in Eq. (22) (and its later use in Eq. (23), for in-
stance) immediately shows that bs has the direct characteristics
of a tensor, thus, it will be referred to it in a more accurate way
as the ‘b-tensor per time interval s’ in the following text from
now on.
For m = n, Eq. (22) leads to the calculation of the diagonal (prin-
cipal axis) components of the effective bs-tensor, for m – n the off-
diagonal (cross) elements result.

With the introduction of the bs-tensor the derived diffusion
operator D can be written in the simple form

D D;bs; sð Þ ¼ exp �Tr bsDð Þð Þ ¼ exp �bs;mnDmnð Þ: ð23Þ

Eqs. (21)–(23) determine the signal attenuation due to the diffusion
motion of spins in a heterogeneous magnetic field for arbitrary k(t)
in a time interval s.

It is important to note that bs is additive while tracing any given
pathway in the EPG due to the block-wise definition of the EPG and
its operators such as D in particular:

bðtotalÞ
mn ¼ bð1Þs;mn þ bð2Þs;mn þ bð3Þs;mn þ � � � : ð24Þ

The superscript numbers in parentheses signifies the arbitrarily
numbered sections of a given EPG. Relation (24) will be exploited
for some of the exemplary calculations of D respective bs in the
‘‘Validated Examples” section.

In the case of isotropic diffusion regarded in 1D-space, which is
the most frequent approach found in literature, the integral of Eq.
(22) reduces to

bs;1D kðtÞ; sð Þ ¼
Z s

t¼0
k2ðtÞdt: ð25Þ

Eq. (25) can be interpreted pictorially as a rotational solid around
the time axis. Thus, the effective bs of an EPG coherence path under
observation corresponds to the volume of its solid of revolution di-
vided by p. This analogy is demonstrated in Fig. 2. A longitudinal
and transversal state with a constant (background) gradient in a
time interval s are shown (no RF pulses). The different forms evolve
due to the fact that for transversal states k changes linearly from k(1)

to k(2) if a non-vanishing constant gradient is present (truncated
cone/frustum). For longitudinal states k remains unchanged
(k = k(1), cylinder).

In the following, the general anisotropic 3D diffusion operator D
derived in Eq. (21) is solved for the most common application of
transversal and longitudinal states simultaneously present with a
rectangular (constant) gradient of arbitrary direction g during a
time interval s. For the solutions, it is important to evaluate the
bs-integral from Eq. (22) for the different boundary conditions of
F- and Z-states. Without loss of generality it is presumed that the
spin system is initially described by the single dephasing coordi-
nate k(1). Then, a generic spin ensemble can be depicted by a linear
superposition of such spin dephasing state, i.e. the vector of parti-
tion states.

Longitudinal Z-states. A Z-state does not experience phase evolu-
tion, although a non-vanishing gradient is present: kmðtÞ ¼ kð1Þm .
Thus, for a longitudinal state bs defined in Eq. (22) takes the form



k
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bL
s;mn kð1Þm ; kð1Þn ; s

� �
¼ kð1Þm kð1Þn s: ð26Þ

Transversal F-states. For these states, k(t) increases linearly from a
given k(1) to k(2) due to the constant gradient g within the time
interval s:

kmðtÞ ¼ kð1Þm þ
kð2Þm � kð1Þm

s
� t: ð27Þ

Evaluating Eq. (22) for transversal states with Eq. (27) for two
different components km, kn leads to

bT
s;mn kð1Þm ; kð1Þn ; kð2Þm ; kð2Þn ; s

� �
ð28Þ

¼ kð1Þm kð1Þn sþ 1
2

kð1Þm kð2Þn � kð1Þn

� �
sþ 1

2
kð1Þn kð2Þm � kð1Þm

� �
s

þ 1
3

kð2Þm � kð1Þm

� �
kð2Þn � kð1Þn

� �
s; ð29Þ

¼ bL
s;mn kð1Þm ; kð1Þn ; s

� �
þ 1

2
kð1Þm kð2Þn � kð1Þn

� �
s

þ 1
2

kð1Þn kð2Þm � kð1Þm

� �
sþ 1

3
kð2Þm � kð1Þm

� �
kð2Þn � kð1Þn

� �
s: ð30Þ

Eqs. (29) and (30) show that the transversal bs-tensor is composed
of two components: The first term corresponds to the longitudinal
bL

s-tensor and would be the exact solution if k was not changing,
the other three terms arise due to the present gradient that leads
to further dephasing and, thus, further signal attenuation.

Finally, since bs has a different form for F- and Z-states and de-
pends on k, it is convenient to describe the diffusion attenuation as
the action of the following diffusion operator:

D ¼
DT 0 0
0 DT 0
0 0 DL

264
375; ð31Þ

where

DL ¼ exp �bL
s;mnDmn

� �
¼ exp �Tr bL

sD
� �� �

; ð32Þ

DT ¼ exp �bT
s;mnDmn

� �
¼ exp �Tr bT

sD
� �� �

: ð33Þ
t
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Fig. 3. EPG and sequence diagram for the simple PGSE sequence. In time intervals
with (ideally) no gradient present transversal states also demonstrate horizontal
phase graphs in the diagrams (two black arrows). The light gray shaded area
between the phase graphs represents the corresponding solid of revolution, its
volume being proportional to the resulting b-factor. Note that both dead times sd

substantially contribute to the diffusion weighting as can be seen from the
rotational solid.
3. Calculation of representative examples

In the following, a few examples will be given to further vali-
date the calculated results, repeat the usage of the EPG, and to
demonstrate its great potential for the calculation of diffusion
effects.

3.1. Published solution for isotropic diffusion in 1D

There is a known solution for the signal attenuation due to iso-
tropic diffusion while a piece-wise constant gradient is present
[11], which is a special case of the presently considered case.
Framed for the EPG calculus this solution takes the form

D1D ¼ exp � kþ Dk
2

� 	2

� s � D
 !

� exp �Dk2

12
� s � D

 !
: ð34Þ

Here, D is the isotropic diffusion coefficient and k is the magni-
tude of the wave vector in the constant direction of the applied
gradient g. Dk is the change of k due to g in the investigated
interval s, being Dk = gs. Eq. (34) represents the compact form
of Eqs. (10) and (11) used in the EPG operator overview in the
Introduction section.

Simplifying the derived longitudinal and transversal 3D diffu-
sion operators of Eqs. (32) and (33) to 1D in the same way leads to:
DL
iso-1D ¼ exp �bL

sD
� �

; ð35Þ

with bL
s ¼ kð1Þ

� �2
s; ð36Þ

DT
iso-1D ¼ exp �bT

sD
� �

; ð37Þ

with bT
s ¼ kð1Þ

� �2
sþ kð2Þ � kð1Þ

� �
2kð1Þ þ kð2Þ
� � s

3
; ð38Þ

or bT
s ¼ kð1Þ þ kð2Þ

� �2 s
4
þ kð1Þ � kð2Þ
� �2 s

12
: ð39Þ

Hereby the already described bs-tensor in 1D (scalar bs, Eq. (25))
was solved for F- and Z-states in an equivalent way as was done
for the 3D anisotropic representation (Eqs. (26)–(30)).

Considering that for constant g by definition is k + Dk/
2 = (k(1) + k(2))/2 and (k(1) � k(2))2 = Dk2 directly proves that Eqs.
(34) and (37) with (39) are equivalent. Thus, the operators coincide
for transversal states. For longitudinal states, setting Dk = 0 and
considering that k = k(1) directly shows that the diffusion operators
for longitudinal states coincide as well (Eqs. (34) and (35) with
(36)).

Note that any operators A defined in Ref. [11] take the form
UAU�1 in the present notations, where the matrix U is defined
by the linear transformation (2)–(4).

3.2. Simple pulsed gradient spin echo sequence

Consider a typical pulsed gradient spin echo sequence (PGSE or
Stejskal–Tanner sequence [24]) as shown in Fig. 3: Two monopolar,
rectangular gradients each of duration d, both with the same direc-
tion and strength g and a mutual time distance of D. The whole MR
sequence is regarded as six different sections: 90�-excitation pulse,
first gradient g of duration d, dead time sd, 180�-refocusing pulse,
dead time sd, second gradient g of duration d, and finally the spin
echo. The black circle in the EPG signifies this spin echo formation
at echo time TE. Relaxation is neglected ðE � 1Þ, yet, can be in-
cluded very easily if desired.
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The echo intensity at TE is determined by the following matrix
operations describing the PGSE in terms of the EPG calculus:

FPGSEðTEÞ ¼ Dðdþ 2sd ! 2dþ 2sdÞSðdþ 2sd ! 2dþ 2sdÞ
Dðdþ sd ! dþ 2sdÞT ðdþ sdÞDðd! dþ sdÞ
Dð0! dÞSð0! dÞT ðt ¼ 0ÞZ0: ð40Þ

For brevity, the operators are noted as being dependent on the
time when they start and end to act, similar to the way in Eq. (12)
near the beginning of the text. The notation used is in close agree-
ment with Ref. [24].

Though Eq. (40) may seem complicated or lengthy, it has to be
considered that this is still a quite general representation, since the
flip angles and gradients are not defined in the equation, yet. For
example, the first pulse is an ideal excitation pulse, thus, all mag-
netization will be excited into the F0-state: T 90� ð90�ÞZ0 ! F0 ¼ 1. T
is also very simple for 180�-refocusing pulses.

As can be deduced from the EPG and the pulse sequence, only
one transversal path to trace exists, which forms the later echo.
No branching of pathways due to imperfect refocusing occurs.
Hence, no longitudinal pathways participate in signal formation.
This observation can be directly exploited to use an even faster
way to determine the total b-factor of the PGSE sequence, and thus
its diffusion weighting. Due to the block-wise definition of the EPG
all four piece-wise bs along the given pathway add up (Eq. (24)):

bPGSE ¼ bð1Þs þ bð2Þs þ bð3Þs þ bð4Þs : ð41Þ

However, this faster solution will not be pursued further. In-
stead, the operators and the vector of states F will be explicitly de-
fined in a very extensive way to demonstrate and repeat the usage
of the EPG including diffusion effects.

It is T ðdþ sdÞ ¼ T 0� ð180�Þ and Z0 = 1, since the magnetization is
initially in the thermal equilibrium. Presuming that both gradients
cause the same shift of Dk ¼ k̂ leads to the shift operations
Sð0! dÞ ¼ Sðdþ 2sd ! 2dþ 2sdÞ ¼ Sðk; k̂Þ : Fk ! Fkþk̂.

For the definition of the (1D) diffusion operators different repre-
sentations are available from the first example. SinceDk was already
defined, the most practical form is the compact k � Dk–representa-
tion from Eq. (34) or Eqs. (10) and (11). Then, the diffusion operators
correspond to Dð0! dÞ ¼ DðD; d; k; k̂Þ ¼ Dðdþ 2sd ! 2dþ 2sdÞ and
Dðd! dþ sdÞ ¼ DðD; sd; k;0Þ ¼ Dðdþ sd ! dþ 2sdÞ. For the latter
two operators was taken into account that all gradients vanish, i.e.
g = 0, and therefore is Dk = 0. It can be already seen that the symme-
try of the sequence around the refocusing pulse is directly reflected
in the mutual identity of operators. k is still undefined such that it de-
pends on the state the operators act on.

Assembling the sections in a very detailed manner leads to:

Section 1 at t ¼ 0 : Fþ0 ¼ T 90� ð90�ÞZ�0 ð42Þ
Section 2 � ½0; d� : Fþ

k̂
¼ DðD; d;0; k̂ÞSð0; k̂ÞF�0 ð43Þ

Section 3 � ½d; dþ sd� : Fþ
k̂
¼ DðD; sd; k̂;0ÞF�k̂ ð44Þ

Section 4 at t ¼ dþ sd :

0
F�k̂

0

264
375
þ

¼ T 0� ð180�Þ
F k̂

0
0

264
375
�

ð45Þ

Section 5 � ½dþ sd; dþ 2sd� :
0

F�k̂

0

264
375
þ

¼ DðD; sd;�k̂;0Þ
0

F�k̂

0

264
375
�

ð46Þ

Section 6 � ½dþ 2sd; 2dþ 2sd� :
0
F0

0

264
375
þ

¼ DðD; d;�k̂; k̂ÞSð�k̂; k̂Þ
0

F�k̂

0

264
375
�

ð47Þ
Here, the superscripts ‘‘+” and ‘‘�” were generalized to mean a vec-
tor of EPG states before (‘‘�”) and after (‘‘+”) the application of the
operators in the investigated section. The 180�-pulse inverts k̂ and
exchanges the populations of the dephasing F k̂- and the rephasing
F�k̂-state (refocusing behavior), as can be also seen by the matrix
representation of the T operator in Eq. (8).

The result vector of EPG states in Eq. (47) directly reflects the
observation from Fig. 3 that only a completely rephased F0-state,
i.e. an echo, is present at the time TE. It is a pure spin echo.

In this example, dephasing is quantified in units of k̂ ¼ gd.
The complete chain for quantifying the echo intensity, which is

the occupation of state F0(TE), then equals to:

F0ðTEÞ ¼ exp � k̂2

4
dD

 !
exp � k̂2

12
dD

 !
� exp �k̂2sdD

� �
� exp �k̂2sdD

� �
� exp � k̂2

4
dD

 !
exp � k̂2

12
dD

 !
ð48Þ

¼ exp �2
3

k̂2dD
� 	

exp �2k̂2sdD
� �

: ð49Þ

With a little previous practice the result of Eq. (49) could have been
directly written out without ‘the detour’ via Eqs. (42)–(47).

Though both dead times do not display any phase evolution
(Dk = 0), there is, indeed, effective diffusion weighting due to the
presence of dephased magnetization (previous phase history:
k – 0, Fig. 3).

Considering the relations k = gd from Eq. (1) and 2sd = D � d, Eq.
(49) is equivalent to stating that the total b-factor for the PGSE se-
quence is

bPGSE ¼ g2d2 � D� d
3

� 	
: ð50Þ

This result is identical to the well-known solution from Stejskal
and Tanner [24].

3.3. Simple pulsed gradient stimulated echo sequence

Applying the framework in a similar way to the problem of a
pulsed gradient stimulated echo sequence [25], leads to identical
results for the weighting terms with the findings of Woessner
[20] and Tanner [25]. To prove this is left as an exercise to the
reader.

3.4. Diffusion sensitivity of a RARE sequence with low constant flip
angles

The presented framework, i.e. the EPG with diffusion effects, is
applied to a contemporary RARE (TSE, FSE) sequence with a user-
defined constant flip angle a [1,17]. As previous works about and
with the EPG already showed, a 1D dephasing coordinate is often
sufficient for understanding the generic response of multi-pulse
sequences such as RARE [2,26,27], which usually is the read-gradi-
ent direction. The same is done for the next two examples to keep
this manuscript within a reasonable scope.

Fig. 4 shows the sequence diagram of such a RARE sequence.
Idealized rectangular gradient shapes were presumed, because
the difference in the results compared to simulating realistic trap-
ezoidal gradient shapes is negligible (unpublished work) and,
moreover, it does not lead to much further insight. However, it
would be fairly easy to implement.

The following given scenario using realistic protocol parameters
for a RARE sequence is presumed: field of view (FOV) = 220 mm,
matrix = 256, echo time (TE) = 80 ms, echo spacing (ESP) = 8.0 ms,
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Fig. 4. Sequence diagram depicting a RARE sequence with the read-gradient direction as the one-dimensional dephasing coordinate, being the direction with the strongest
gradients. After the 90� excitation pulse refocusing pulses with an arbitrary constant flip angle a follow. Additional gradient spoilers were considered. The sketch is true to
scale.
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echo train length (ETL) = 11 or greater, bandwidth = 264 Hz/px, the
durations of the excitation and refocusing RF pulses are 2.56 ms
each. This will result in the following approximate gradient pulse
settings: combined read dephase and spoiler gradient in the 1st
interval GR-Sp-1 = 15.0 mT/m, sR-Sp-1 = 1.44 ms; read encoding gra-
dient 2nd and following intervals GR-2 = 7.2 mT/m, sR-2 = 4.0 ms;
pair of read spoilers with GSp-2 = 9.9 mT/m, sSp-2 = 0.72 ms each.
The sketch in Fig. 4 is true to scale for the gradient amplitudes
and the whole sequence timing.

The necessary EPG operators S; T ; E; D were defined in accor-
dance with the chosen protocol parameters, based on their defini-
tion in the operator list of Eqs. (7)–(11). For a quick and
comfortable investigation of the example, the EPG concept with
its operators was translated into a MATLAB script (The Mathworks,
Natick, MA, USA). Since the EPG is based on calculations with
matrices and vectors, it is a task well suited for computers and
fairly easy to program (see also Appendix A).

In the following, a virtual tissue with realistic relaxation times
of T1 = 1000 ms and T2 = 100 ms as well as a diffusion coefficient
of D = 0.001 mm2/s is introduced for simulations.

Fig. 5, left side, displays the resulting signal response depending
on the refocusing flip angle a. The extreme cases are a = 0� and
a = 180� representing the cases of no refocusing and a standard
RARE with perfect refocusing, respectively. The signal curve is
clearly dominated by the maximal achievable signal intensity for
a RARE sequence in dependence of a. Its shape is a sin(a/2)-func-
tion [28].

Fig. 5, right side, shows the net b-factor to expect in dependence
of the constant flip angle a. As can be seen, the diffusion sensitivity
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Fig. 5. Left: Simulated signal response measured with a RARE sequence depending
on the flip angle a, explicitly considering relaxation and diffusion effects. The signal
curve is clearly dominated by the general signal behavior of a RARE sequence. Right:
Dependence of the total b-factor on the flip angle a. For RARE sequences with high
flip angles the diffusion weighting is negligible. For low flip angles, however, b
becomes more pronounced.
of a RARE sequence is practically negligible even for moderate refo-
cusing flip angles. Interestingly, the b-factor considerably increases
for quite low flip angles. This effect can be explained by the fact
that for such low flip angles a great fraction of the magnetization
is either well dephased transversal or ‘stored’ longitudinal magne-
tization. Both types experience noticeable diffusion weighting (see
Section 2).

In terms of the EPG, low a mean the occupation of F- and Z-par-
tition states of high order k. Since the signal attenuation due to dif-
fusion is proportional to k2, the diffusion sensitivity of a RARE
sequence with low refocusing flip angle a has to increase consider-
ably and therefore b as well.
3.5. Diffusion sensitivity of a RARE sequence with variable flip angles

As a variant from the last example to further show the consid-
erable potential of the EPG approach with diffusion effects, the
concept is applied to a modern RARE with variable refocusing flip
angles, using the TRAPS principle [29].

The same RARE sequence with identical protocol parameters as
in the last section is used except for the flip angles and that ETL is
at least 14. The new course of variable flip angles is outlined in
Fig. 6, left side, and was taken from Ref. [30]: Initial preparation
pulses down to 60� followed by an ascending linear ramp of refo-
cusing flip angles back to 180� are analyzed.

The given task can be easily solved with the already developed
tools: Since the developed EPG concept allows for arbitrary flip an-
gles, the mentioned MATLAB code or any other software imple-
mentation has only to be adapted to the fact that a changes with
the RF pulse number and that a longer ETL is investigated.

Fig. 6, left side, shows the refocusing flip angle schedule pre-
sumed for the RARE experiment. It represents a realistic TRAPS-
RARE experiment [29,30]. The net b-factor btot depending on the
echo number is displayed in the center. Naturally, btot increases
with the number of echoes due to the accumulating diffusion ef-
fect. However, the effective b-factor per echo interval bs�eff is very
different from interval to interval as is explicitly shown in Fig. 6,
right side. The main reason definitely being the significant varia-
tion of flip angles that leads to pronounced changes in the occupa-
tion of partition states in the EPG representation.

At this point, it is refrained from further discussing the given
examples since the presented results and effects are inherent to
the investigated types of (more complex) sequences; they are not
inherent to the EPG framework itself. Thus, a proper analysis
including a detailed discussion is beyond the scope of this work.
However, they may be adequate to indicate the potential of the
EPG framework with diffusion effects.
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4. Discussion

Diffusion effects and diffusion weighted imaging (DWI) have
been extensively used in biomedical imaging [15,20,24,25,31,32].
DWI is usually achieved by a preparation scheme based on the
fairly simple PGSE sequence [24] or, less frequently, based on stim-
ulated echo schemes [25]. Mathematical solutions to characterize
the effective diffusion weighting of these preparation schemes ex-
ist [20,24,25,31] since the early age of MR.

In ‘diffusion-less’ MR imaging fast imaging sequences with arbi-
trary refocusing flip angles have gained interest especially for high-
field MR, where the use of 180� flip angles is limited by SAR, and
constant and homogeneous flip angles can not be maintained
due to B1 inhomogeneities [14,26–30,33–38].

Modified RARE(TSE, FSE)-sequences have always sustained and
in recent times even regained some interest as read-out modules in
DWI [39–41], since they are less sensitive to field inhomogeneity
effects compared to echo planar imaging (EPI) sequences, the stan-
dard read-out type. However, describing the signal response or cal-
culating the effective b-tensors of such advanced sequences for
DWI or diffusion tensor imaging (DTI, [22,23]) is considerably more
complex. Up to date, existing solutions are either numerically
based and/or very tedious for even moderately complex sequences
[20,42]. Some of the better known solutions are limited to 180� RF
pulses only [43,44], isotropic diffusion, constant gradients, single
gradient directions [11]. These disadvantages aggravate substan-
tially if RF pulses with low flip angles and gradients with multiple
and arbitrary gradient shapes are employed.

The EPG calculus is a means to depict the magnetization re-
sponse of MR sequences in an efficient and intuitive way even
for large numbers of RF pulses and arbitrary gradients [1–3,8]. In
this work, it was demonstrated that the EPG calculus affords a
visualization of the mathematically exact solution to the Bloch–
Torrey equation using the method of characteristics. A new
operator D for the EPG calculus (Eq. (21)) was introduced which
accounts for anisotropic diffusion effects on the signal attenuation.
This allows for determining the accurate signal response of
complex pulse sequences including diffusion effects by only a
few simple matrix operations, i.e. a sequence of operators acting
on dephasing (partition) states. This results in a high computa-
tional efficiency, but also permits the pictorial and intuitive under-
standing of echo formation within the framework of the EPG. Thus,
novel diffusion experiments such as Hyperecho-diffusion
[34,45,46] or double wave vector diffusion [47] may now be
characterized in the compact block-wise, successive description
of the EPG.

Since Eqs. (21) and (22) represent an exact solution even for
arbitrary gradient time courses with arbitrary variable directions,
it is fairly easy to account for their precise effect on diffusion quan-
tifications by evaluating the corresponding integrals and, thus,
defining the appropriate anisotropic diffusion operators. This en-
sures that the theoretical depiction of MR diffusion experiments
reflects the real time course of the gradients, rather than a se-
quence of idealized rectangular gradient shapes.

Current limitations of the EPG based approach are that RF
pulses are regarded as instantaneous. This hard-pulse approxima-
tion is also used in the standard description of diffusion imaging
and is valid as long as diffusion displacements during the pulse
are small. In principle, shaped soft pulses could be incorporated
into the EPG description by using a DANTE approach, in which
arbitrarily shaped RF pulses are decomposed into a sequence of
instantaneous RF pulses with low flip angle [11,48,49]. More real-
istic effects like restricted diffusion could be also considered by
use of a more general description of diffusion in terms of
effective medium [50] or the consideration of other diffusion
models.

Conventional phase graph approaches such as the partition
state algorithm require to trace all existing pathways to determine
the echo intensity [20,42]. Since the number of signal formation
pathways grows with the number N of refocusing pulses by a factor
of 3N�1, this approach becomes unfeasible for even a modest num-
ber of refocusing pathways. By using the EPG calculus a single
quantitative value k serves to depict the previous phase histories
at the beginning of an investigated sequence section. The complex-
ity of calculating effective diffusion weighting, thus, only grows
linearly with N.

In literature, it is common to use integral values of k as a mere
label for the phase state constellations (F±1,Z1,F±2, . . .), for instance.
This simplification is valid to describe mechanisms that do not de-
pend on the absolute dephasing k (1D) or k (3D). This applies to the
operators used for dephasing ðSÞ, RF pulses ðT Þ, and relaxation ðEÞ.

In order to incorporate diffusion the actual k-space trajectory
k(t) has to be considered (Eq. (21)), since diffusion dependent sig-
nal attenuation depends on k and all calculations have to be per-
formed with the exact k values. Particularly, it should be noted
that diffusion dependent signal attenuation increases quadratically
with jkj (see also Figs. 2 and 3). Higher dephasing states therefore
show much stronger diffusion effects than states of low dephasing.

The examples presented in this work served for the validation of
the algorithm and to demonstrate the mechanism of how calcula-
tions of diffusion effects within the framework of the EPG concept
are performed. Results for the RARE (TSE, FSE)-sequences illustrate
the potential of our approach.

Future studies will include the study of advanced MR diffusion
techniques such as q-space imaging [51], diffusion spectroscopic
imaging (DSI) [52], or high-angular-resolution diffusion imaging
(HARDI) [53], as well as diffusion weighting by Hyperecho and
TRAPS sequences [29,34,45,46].
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5. Conclusion

An anisotropic diffusion operator for the EPG calculus was
introduced that allows for an easy, fast and exact calculation of
b-tensors and diffusion dependent signal attenuations for multi-
pulse MR sequences with arbitrary flip angles, phases, and gradi-
ents. Although not specifically considered in the Examples section,
the developed algorithm can be easily extended to include the de-
rived anisotropic diffusion operator. The use of the EPG calculus
enables a high efficiency for the quantitation of echo intensities
and can be easily implemented using common programming tools
like MATLAB or C++.

Appendix A

A.1. Possible availability of source code

Interested readers may obtain a framework of programming
source code from the authors for simulating extended phase
graphs. This software framework, called ‘EPGspace’, was also used
for the presented examples and, thus, includes the assessment of
diffusion effects. Please contact the first and corresponding author
(MW) for further information.

A.2. Solution of the Bloch–Torrey equation for anisotropic diffusion
using the method of characteristics

Here, a solution of the Bloch–Torrey equation (Eq. (13)) formu-
lated in conventional mathematical terms is presented. It is conve-
nient to begin with a substitution that accounts for relaxation:

w ¼ exp �I2
z � t=T2 � ð1� I2

z Þ � t=T1

� �
v: ðA:1Þ

The simplest way to work with the exponent of the matrix
shown in Eq. (A.1) is to expand the magnetization vector v in the
eigenvectors and to replace the matrix with the corresponding
eigenvalues. In practice this means that matrix I2

z is one or zero
when acting on the transverse or longitudinal components of v,
respectively (Eq. (14)). Matrix ð1� I2

z Þ gives zero or unity corre-
spondingly. The residual equation for v takes the form

@v
@t
¼ Dmnrmrnvþ igmrmv: ðA:2Þ

For clarity, this equation is first solved in one spatial dimension.
A generalization for the anisotropic diffusion in three dimensions is
presented at the end of this appendix.

In one spatial dimension Eq. (A.2) takes the form

@v
@t
¼ D

@2v
@r2 þ igðtÞrv: ðA:3Þ

This equation becomes simpler when formulated for the Fourier
transformed magnetization ~vðkÞ

@~v
@t
þ gðtÞ @

~v
@k
¼ �Dk2 ~v: ðA:4Þ

This equation is a particular case of the following equation,
which is now considered in order to make the idea of the solution
more apparent:

aðt; k; ~vÞ @
~v
@t
þ bðt; k; ~vÞ @

~v
@k

~v ¼ cðt; k; ~vÞ: ðA:5Þ

For simplicity, ~v is temporarily considered as a scalar variable
rather than the magnetization vector. In this case, any solution to
Eq. (A.5) describes a surface ~vðt; kÞ. The coefficients a, b and c can
be considered as the three components of a vector, v, which is de-
fined in each point of three-dimensional space of variables t, k and
~v. In terms of these quantities, Eq. (A.5) is a statement that vector v
is tangential to the surface at each point. To show this, one needs
first to write the differential of d~v on the surface and represent it
in the form of a scalar product of two vectors:

@~v
@t
;
@~v
@k

;�1
� 	

ðdt; dk; d~vÞy ¼ 0: ðA:6Þ

This reveals the fact that the first vector, denoted for brevity as
n, is normal to the surface. Eq. (A.5) can now be written as nv = 0,
which proves the above statement.

The vector field v defines lines to which this vector is tangential
at each points, the so-called integral curves. The plane ~vðt; kÞ can
be considered as the union of all such curves that are selected by
the initial condition at t = t0. Along the integral curve, the differen-
tial of the position is parallel to vector v:

dt ¼ aðt; k; ~vÞdu; ðA:7Þ
dk ¼ bðt; k; ~vÞdu; ðA:8Þ
d~v ¼ cðt; k; ~vÞdu; ðA:9Þ

where u is a parameter along the curve. This system of equations
can be solved using the explicit form of a, b and c. The first equation
gives u = t � t0. The second and the third equation yield the solution

kðtÞ ¼ kðt0Þ þ
Z t

t0

gðt0Þdt0; ðA:10Þ

~vðtÞ ¼ ~vðt0Þe
�D
R t

t0
kðt0 Þ2dt0

: ðA:11Þ

In the context of EPGs, the magnetization in k-space is a sum of
delta-functional contributions, the spins. In this case the equations
above describe the evolution of the wave vector and of the corre-
sponding magnitude, respectively.

The generalization to the general case of three-dimensional
magnetization is straightforward. One has to apply the above logic
to each of three equations for individual components of the mag-
netization treated in five-dimensional space. This leads to equiva-
lent expressions for the definition of km (Eq. (1)) and the resulting
solution for the anisotropic diffusion operator D (Eq. (21)).
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